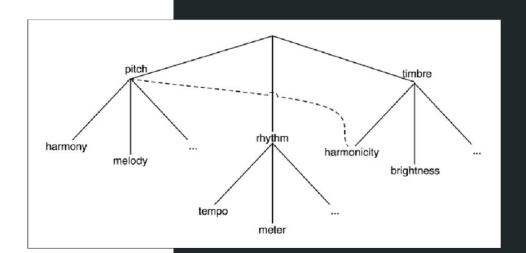

Algorithmic Aria

Navigating the Melodic Maze of Musical Preference

Why pick music for research


- HUGE fan

Operating Definitions

- Affective Algorithmic Composition [AAC]
 computer-aided composition techniques
 to generate music with specific emotional qualities
- Facial and Eye-movement Recognition
 using computer vision technology to analyze
 and interpret facial expressions and eye movements

Background

- Music is becoming popular as non-invasive medical intervention
 - "it is the act of [the patient] making a choice that determines the greatest effectiveness of the [musical] procedure"
- AAC-generated music can affect your brain directly
- real-time user input can highly personalize this music for stronger effects

Research Question

How can algorithms predict the music a person connects to based on observing sessions paired with facial and eye-movement recognition, with a vested interest in musical components like melodic elements, chord progressions, etc. instead of the historical data aggregation methods currently in place?

Hypothesis

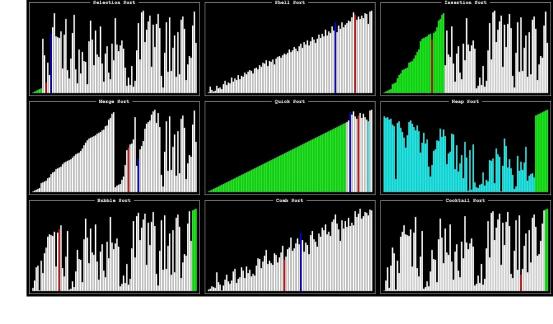
By using computer vision in conjunction with the knowledge of specific musical components, algorithms will be able to make reasonably accurate predictions (60% or higher) for the kind of music the user will find enjoyable, and generate such music to be tested.

Rationale

- Lack of research
- Music intervention can save money
- Benefits + undiscovered potential
 - reduced 4.4 mg MEDs opioids in ~5,000 surgical patients

Limitations

- privacy concerns
- factors indiscernible from computer vision alone
- lyrics, artists, etc.) are not captured
- computational resources



Next steps

Contacting experts

Start designing algorithms

How is data overload solved

References

Anderson, A., Maystre, L., Mehrotra, R., Anderson, I., & Lalmias, M. (2020, April). ALGORITHMIC

EFFECTS ON THE DIVERSITY OF CONSUMPTION ON SPOTIFY. 2020 IW3C International World Wide Web Conference, April 20–24, 2020). https://www.cs.toronto.edu/~ashton/pubs/alg-effects-spotify-www2020.pdf

- Benward, B., & Saker, M. (2003). *Music in Theory and Practice, Vol 1*. McGraw Hill.

 https://www.google.com/books/edition/Music_in_Theory_and_Practice/IkYJA_QAAMAAJ?hl=en
- DeLone, R. (1975). Aspects of Twentieth-century Music. Prentice-Hall.

 https://www.google.com/books/edition/Aspects_of_Twentieth_century_Music/ZGOXAQAAIAAJ?hl=en
- Fu, V. X., Oomens, P., Klimek, M., Verhofstad, M. H. J., & Jeekel, J. (2020, December). THE EFFECT

OF PERIOPERATIVE MUSIC ON MEDICATION REQUIREMENT AND HOSPITAL

LENGTH OF STAY: A META-ANALYSIS. *Annals of Surgery, Vol. 272 No. 6*. https://pubmed.ncbi.nlm.nih.gov/31356272/

- Guerrier, G., Bernabei, F., Lehmann, M., Pellegrini, M., Giannaccare, G., & Rothschild, P-R. (2021,
- September). EFFICACY OF PREOPERATIVE MUSIC INTERVENTION ON PAIN AND

ANXIETY IN PATIENTS UNDERGOING CATARACT SURGERY. Frontiers

Pharmacology.

in

https://doi.org/10.3389/fphar.2021.748296

- Lorek, M., Bak, D., Kwiecień-Jaguś, K., & Mędrzycka-Dąbrowska, W. (2023). The Effect of Music as a Non-Pharmacological Intervention on the Physiological, Psychological, and Social Response of Patients in an Intensive Care Unit. *Healthcare 2023, 11, 1687*. https://doi.org/10.3390/healthcare11121687
- Velardo, V. (2019, February). Spotify's Discover Weekly explained Breaking from your music bubble or, maybe not? Medium, The Sound of AI. https://medium.com/the-sound-of-ai/spotifys-discover-weekly-explained-breaking-from-your-music-bubble-or-maybe-not-b506da144123
- Williams, D., Kirke, A., Miranda, E., Daly, I., Hwang, F., Weaver, J., & Nasuto, S. (2017). Affective Calibration of Musical Featuresets in an Emotionally Intelligent Music Composition System. https://dl.acm.org/doi/10.1145/3059005
- Zhang, Y. (2022) Intelligent Recommendation Model of Contemporary Pop Music Based on Knowledge Map. *Hindawi Computational Intelligence and Neuroscience, Vol. 2022*. https://doi.org/10.1155/2022/1756585